

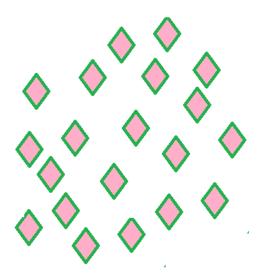
Matemática

Tema da Aula:

Potenciação

OBJETIVOS:

• Reconhecer, calcular e aplicar o conceito de potenciação de números reais com base natural.

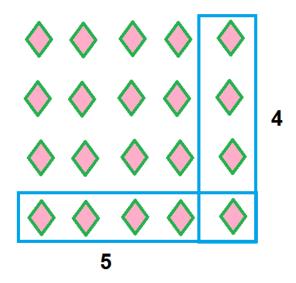


Na Matemática, é comum o uso de operações. Quando se trata de números, trabalhamos com <u>SEIS</u> operações básicas:

- 1) As quatro <u>fundamentais:</u>
 - Adição e seu inverso, a Subtração
 - Multiplicação e seu inverso, a Divisão
- 2) E mais duas:
 - Potenciação e seu inverso, a Radiciação

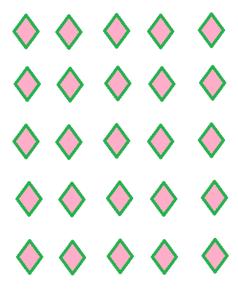

Relembremos algumas definições importantes:

Vamos tentar contar as figuras do desenho a seguir:


Como a quantidade de figuras é pequena, não é difícil chegar à conclusão que são vinte. Porém, a disposição desorganizada das figuras dificulta um pouco o processo de contagem. Seria mais fácil se as figuras tivesses dispostas assim:

Note que temos 4 fileiras de 5 figuras. Este total pode ser calculado de várias maneiras. Vejamos duas delas:

- 1º) Temos 4 fileiras de 5 figuras. Basta somarmos '5' quatro vezes: 5 + 5 + 5 + 5 = 20
- 2º) Temos 4 fileiras de 5 figuras. Basta multiplicarmos '5' por quatro: 5 x 4 = 20



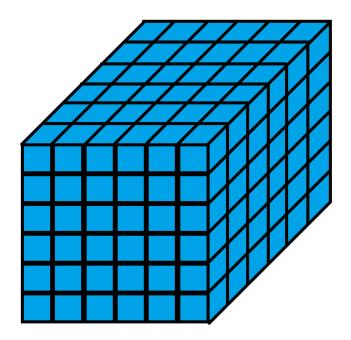
$$5 \times 4 = 20$$

Note que a multiplicação é uma maneira inteligente de representarmos somas de parcelas iguais. Agora, imagine se tivéssemos 35 fileiras com 20 figuras. Somar 20 com ele mesmo 35 vezes é um trabalho enorme. O melhor é efetuar: 35 x 20 ou 35 . 20 = 700

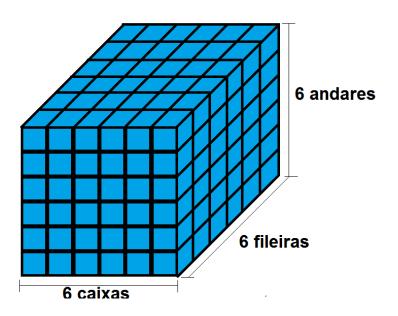
Voltando à contagem anterior, imagine que acrescentemos mais CINCO figuras. Ou seja, teríamos 25 figurinhas:

Teríamos, então, <u>CINCO</u> fileiras de <u>CINCO</u> figurinhas. Isto é, teríamos 5 x 5 = 25

Note que o produto anterior possui dois fatores iguais. Ora, se a multiplicação é uma representação de uma soma de parcelas iguais, existiria uma representação para uma multiplicação de fatores iguais?


A resposta é sim, chamamos de POTENCIAÇÃO. O produto anterior 5 x 5 será representado pela *potência*: 5² ('cinco elevado a expoente dois', ou simplesmente 'cinco ao quadrado').

Vejamos outro exemplo prático:


Com o problema da qualidade da água oferecida pela CEDAE na região metropolitana do Rio de Janeiro, um supermercado encomendou certa quantidade de garrafas de

água. Elas vêm embaladas em caixotes com 6 garrafas cada. Esses caixotes, de cor azul e borda preta, foram acondicionados conforme a figura a seguir:

Um estoquista dessa rede de supermercados precisava saber a quantidade total de garrafas dessa pilha. Observe como ele fez isso:

Temos 6 caixas e 6 fileiras: $6 \times 6 = 36$ caixas no primeiro andar da pilha. Como são seis andares, teremos: $36 \times 6 = 216$ caixas na pilha. Contudo, como em cada caixa há seis garrafas, teremos: $216 \times 6 = 1$ 296 garrafas.

Note que essa quantidade também poderia ser escrita pelo seguinte produto de fatores iguais: $6 \times 6 \times 6 \times 6 = 1$ 296 = 6^4 (seis elevado a quarta potência). Com essa ideia, podemos definir o que é uma <u>POTÊNCIA</u>.

<u>Definição Inicial</u>: diremos, a princípio, que a^b é uma <u>potência</u> onde a^b é um número real (que chamaremos de <u>base</u> da potência) e a^b é um número natural (que chamaremos de <u>expoente</u> da potência) tal que ela represente o produto de a^b por ele mesmo com uma quantidade a^b de fatores. Ou seja:

4 base

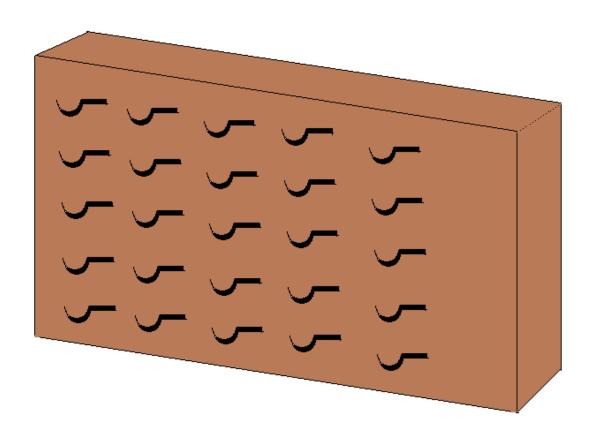
Exemplos:

a)
$$5^2 = 5.5 = 25$$

b)
$$6^4 = 6.6.6.6 = 1296$$

c)
$$2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$$

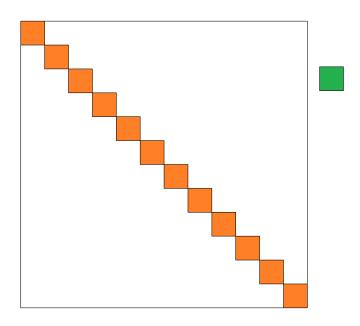
d)
$$3^3 = 3 \cdot 3 \cdot 3 = 27$$


f)
$$0^{50} = 0.0.0. \dots .0 = 0$$

g)
$$10^6 = 10.10.10.10.10.10 = 1000000$$
 (um milhão)

Atividades

 A figura a seguir representa um claviculário (local onde se coloca chaves) de um estacionamento rotativo no centro de Duque de Caxias. Em cada gancho dá para colocar no máximo 5 chaves.



Responda:

- a) Qual o número máximo de chaves que este estacionamento pode guardar?
- Represente o resultado anterior em forma de potência, identificando a base e o expoente.

2) O piso de uma cozinha quadrada receberá dois tipos de azulejos quadrados de mesmo tamanho, um laranja e outro verde. Os laranjas ficarão na diagonal e os verdes irão compor os demais espaços. A figura a seguir é um esboço da situação:

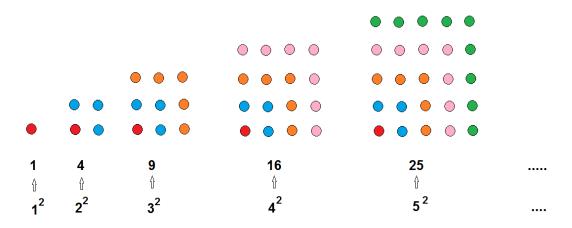
Responda:

- a) Quantos azulejos verdes serão necessários?
- b) Qual o total de azulejos?
- c) Esse total pode ser escrito em forma de potência? Em caso afirmativo, apresente-a.

3) Agora, vamos a um caça-palavras:

Ã	Α	Ã	õ	В	Q	J	A	Q	0	Q	R	Á	P	С	P	Á	R	G	À
P	∇	P	∇	I	R	õ	Â	ó	С	N	L	0	Н	N	Ü	I	Á	Ã	Ü
М	Z	Ê	0	∇	ó	Н	М	Ç	В	Z	Ê	L	I	G	Ê	E	Ü	R	s
ó	L	F	U	т	Х	K	R	Z	É	Í	W	C	М	т	ò	Х	G	S	W
С	F	М	Ê	М	Ê	Ã	E	Y	Ê	Á	A	L	М	I	Z	Q	Ã	Ú	С
À	R	N	ô	G	É	N	∇	т	õ	Á	Ú	S	G	H	Q	ô	W	Х	Х
ò	В	A	0	É	E	Ú	C	õ	N	L	F	õ	∇	J	М	D	C	Ú	V
т	L	М	т	P	õ	S	É	I	U	E	Н	À	Ê	S	М	Ç	I	Ç	Â
х	G	S	Ü	õ	Z	N	A	Ü	A	ô	0	G	ô	ò	R	Q	G	Z	Â
υ	G	Á	À	Â	ò	В	М	В	∇	R	0	P	С	Â	Ê	L	G	Í	М
s	Z	Ç	E	P	A	Х	É	т	Z	Ã	õ	С	Х	K	É	ь	K	s	À
ç	Ê	G	Á	Â	Х	Ç	Ê	А	А	В	\mathbf{T}	М	N	E	K	U	Ü	Ç	Ã
							\mathbf{T}												Í
Á	Á	В	Ü	ô	0	ó	A	D	U	L	D	É	Q	À	S	N	ò	É	s
N	Q	U	Ê	À	F	Х	L	В	P	Ç	W	É	E	∇	L	0	É	Х	Í
F							F												
É	I	Z	P	É	Q	U	A	т	R	0	С	E	N	т	0	S	S	P	R
D	N	S	Ê	J	т	ò	Х	ô	М	À	P	С	ô	Á	W	ô	ò	ь	E
R	Z	Z	P	E	G	Ç	Â	Ê	P	F	A	Â	R	Í	Ê	0	I	Í	Z
							Z												

<i>a</i> ^b é uma	, onde " <i>a</i> " é a	e " <i>b</i> " é o	·	
0 ⁴⁰⁰ é igual a	; dez elevado ao cubo o	é igual a; 10 ⁶	é igual a um	<u>-</u> ·
16² é igual a	; o número que eleva	ado ao quadrado é ig	ual a 22 5 é o	


Obs: procure os resultados numéricos expressos por extenso. Ou seja, se o resultado é '8', procure 'oito'.

Para saber mais...

NÚMEROS QUADRANGULARES ou NÚMEROS QUADRADOS ou ainda QUADRADOS PERFEITOS

Número quadrado, em matemática, é um inteiro que pode ser escrito como o quadrado de outro número inteiro. Ou ainda, se a raiz quadrada de um número inteiro for outro inteiro, o primeiro é um número quadrado.

Os primeiros 50 números quadrados são:

$1^2 = 1$	11 ² = 121	$21^2 = 441$	31 ² = 961	41 ² = 1681
$2^2 = 4$	$12^2 = 144$	$22^2 = 484$	$32^2 = 1024$	$42^2 = 1764$
$3^2 = 9$	$13^2 = 169$	$23^2 = 529$	$33^2 = 1089$	$43^2 = 1849$
$4^2 = 16$	$14^2 = 196$	$24^2 = 576$	$34^2 = 1156$	$44^2 = 1936$
$5^2 = 25$	$15^2 = 225$	$25^2 = 625$	$35^2 = 1225$	$45^2 = 2025$
$6^2 = 36$	$16^2 = 256$	$26^2 = 676$	$36^2 = 1296$	$46^2 = 2116$
$7^2 = 49$	$17^2 = 289$	$27^2 = 729$	$37^2 = 1369$	$47^2 = 2209$
$8^2 = 64$	$18^2 = 324$	$28^2 = 784$	$38^2 = 1444$	$48^2 = 2304$
$9^2 = 81$	19 ² = 361	$29^2 = 841$	39 ² = 1521	$49^2 = 2401$
$10^2 = 100$	$20^2 = 400$	$30^2 = 900$	$40^2 = 1600$	$50^2 = 2500$

A partir do número 1, todos os números quadrados resultam duma sucessão matemática.

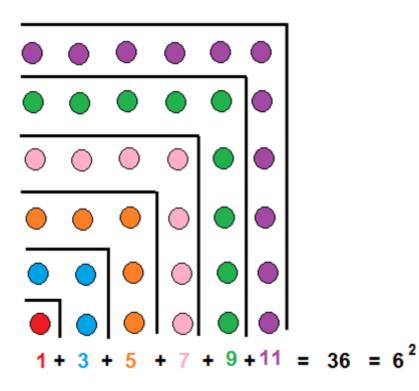
$$1^2 = 1$$

$$2^2 = 1+3=4$$

$$3^2 = 4+5=9$$

$$4^2 = 9 + 7 = 16$$

$$5^2 = 16 + 9 = 25$$


$$6^2 = 25 + 11 = 36$$

$$8^2 = 49 + 15 = 64$$

$$9^2 = 64 + 17 = 81$$

$$10^2 = 81 + 19 = 100$$

Observe que todo quadrado perfeito resulta da soma de números ímpares consecutivos

(6 linhas x 6 colunas)

Adaptado de: https://pt.wikipedia.org/wiki/N%C3%BAmero_quadrado, acesso 26/03/2020.